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EEG und Hans Berger

» Erste Ableitungen eine ,EEG" MR S
am Menschen 1924 K7 90 5 PRI e, i

» .Berger-Reaktion” mit Alpha
Wel Ien 6. EEG Findings in Depression

Lemere (1941) was the first to report that manic-depressive patients tend to have a large
amplitude, strongly dominant alpha rhythm. Davis (1941, 1942) confirmed Lemere’s

- finding showing that manic-depressed individuals have more alpha-type EEGs compared
® E rste Ve rI I l u tete KO rre I atl O n with schizophrenics, and|that predominantly depressed patients have more alpha-type jand
mixed alpha and slow activity EEGs; whereas predominantly manic patients have more

ZWi SC h e n AI p h a Wel Ie n u n d mixed alpha and fast activity EEGs. Greenblatt et al. (1944) further discriminated the

manic patients, based on the large amount of fast activity found in his manic group. Hurst

. et al., 1954, also found that manic patients have higher alpha frequencies than the

aﬁe kt I Ve n Sy m pto m e n depressed patients, but they did not show a shift in alpha frequency accompanying a phase
change, whenever a manic-depressive patient shifted from mania to depression or from

depression to mania. On the contrary, some others observed an increase in alpha

® B e re I tS 1 9 4 1 ko n k rete frequency during manic episodes of two manic-depressive patients.
Through visual analysis of the EEGs of 73 schizophrenics and 100 endogenous
F - depressed patients, it was shown that there is a significant relationship between alpha
H yp Oth ese n fu r KO rre | atl O n e n dominance and depression, and beta dominance and schizophrenia (Itil, 1964). Brezinova
et al., 1966, reported a greater abundance of alpha rhythm in patients with endogenous

E E G u n d D e p re SS i O n e n depression. Volavka et al., 1967, compared the EEGs of five depressed patients during the

episodes of depression and during remission. The patients showed significantly more alpha
and beta activities during the depressive phase.

Itil 1983
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Das Pharmako-EEG

» Bereits 1937 postulierte H. Berger, dass einen
engen Zusamenhang zwischen
Verhaltensanderung und EEG-Mustern ]

e 1957 berichtete Max Fink von engen
Zusamenhangen zwischen Besserung nach
EKT und EEG Veranderungen

26.6-40cpr

(Mson valus)
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« 1954 berichteten Itil und Bente von EEG @f... . T
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Veranderungen unter Chlorpromazin S

FiG. 3. EEG dose response curve.
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« 1964 berichtet Itil davon, dass antidepressive Medikamente eine
Verminderung der EEG Alpha Aktivitat bewirken

Das Pharmako-EEG

CHLORDIAZEPOXIDE (0.7mg/kg n IOmins.iv.)
RO RE MV AN MUY, e AV et A A e s, <Ay it i

IMIPRAMINE (0.4 mg/kg in IOmins.i.v)

RO -RE MM s MM sy IV AV siny iy WS A A Ay WAoot

CHLORPROMAZINE (0.7mg/kg in iOmins.iv.)
RO RE WMANAAAA A M VANTAINT sV AYMINA RN s St A A A= ARAR Ay

FPRE DRUG | sec._J80.uv Bmins 36 mins 92 mins after injection

Fi1G. 5. EEG classification of psychotropic drugs.
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Das ,Key-Lock" Prinzip <+

FiG. 17. Chemical structures of GB-94 (Mianserin) and GC-46.

e Entdeckung der antidepressiven Wirkung des Mianserin
durch Itil aufgrund des EEG-Profils 1972

Progress in Neurobiology, Vol. 20, pp. 185 to 249 19%3

0301-0082/83/50.00 + .50 - MEAN GLOBAL SCORE HAMILTON DEPRESSION BLOOD PRESSURES
Printed in Great Britain. All rights reserved Copyright ¢ 1983 Pergamon Press Ltd. 28 - RATING SCORES
2 o
. 2 s \/
THE DISCOVERY OF ANTIDEPRESSANT DRUGS BY o ‘

COMPUTER-ANALYZED HUMAN CEREBRAL
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704
Division of Biological Psychiatry, Department of Psychiatry, 20 T y ' 2 10 : ' . . : ,
New York Medical College, Valhalla, NY 10595, U.S.A. o o ez 03 oo or 03 oo o 0z 03
and HZI Research Center, Tarrytown, NY, U.S. A. CODE PERIODS
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 Erstbeschreibung von K-Komplexen uns Schlafspindeln
1937

* Anfange der Polysomnographie

EEG und Alfred Lee Loomis
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Das EEG Vigilanzmodell

 Die Vigilanz als globaler Hirn-
Funktionszustand: Reaktion auf Stimuli
(Head 1923)

i T P |
Desynchronized, flat EEG without 50'“; 1s
horizont S
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e Operationalisierung der EEG-Vigilanz
(Loomis 1937, Bente, Roth 1967)
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* Psychiatrische Syndrome und EEG-
Vigilanz (Ulrich 1988)

* Das EEG-Vigilanzmodell bel
psychiatrischen Erkrankungen (Hegerl
2014)
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Vigilance stage A2/3
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Vigilance stage C
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EEG-Vigilanz-Framework (Hensch&Hegerl 2014

Affektive Symptome als Kompensation der Vigilanzregulation

Wakefulness

Hyperstable

Vigilance stages

Sleep

Instable

Slowly declining

Time [15 min] E

Hyperstabile Vigilanzregulation bei Depression
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Olbrich et al. 2012
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Instabile Regulation bei manischen Symptomen, ADHS und emotional instabiler PKS
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Validierung EEG - Vigilanz

Stable Cluster

Unstable Cluster
540s (n=12)

910s (n=13)
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Wann EEG In der Psychiatrie”.

* Medikation Baseline: Lithium und Clozapin

 Differentialdiagnostik Panikattacken vs. Anfalle vs. Dissoziation

» Differentialdiagnostik Depression (Pseudodemenz) versus Demenz

» Klinik fur Anféalle (Alkoholentzug, Status epilepticus, etc)

» Ausschluss organischer Ursachen der Symptome, z.B. Erstmanifestation Psychose

« Delirante Zustandsbilder

» Ausschluss organischer Ursachen bei atypischer Prasentation oder Therapieresistenz

 |m Rahmen der individualisierten Medizin: EEG Biomarker zur Identifikation der besten
Behandlungsschemata



Psychiatrische
Universitatsklinik
Zurich

Demenz vs. Pseudodemenz
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Pogarell et al. DGKN 2018

|. EEG in der Psychiatrie: Believers

Conventional and John R. Hughes, M.D., Ph.D.
. . E. Roy John, Ph.D.
Quantitative
Electroencephalography
in PSYChiatry J Neuropsychiatry Clin Neurosci 11:2, Spring 1999

SUMMARY
Both conventional EEG and QEEG studies provide valu- Conventional EEG assessments should be included in
able information to the psychiatrist regarding diagnosis the diagnostic workup for the following;

and treatment responsiveness.
Conventional EEG is most useful in the following:

1. An acute confusional state.
= . 2. The first presentation of schizophrenia.
ol i e i 3. A major mood disorder or mania.
2. Identifying gross alterations in the background fre- 4. Refractory behavioral problems such as obsessions,

quencies of the EEG.

3. Identifying intermixed slow activity that may be re-
lated to delirium or dementia.

4. Evaluating sleep disorders.

violence, or panic.



Psychiatrische
Universitatsklinik
Zurich

So g

Clinical Neurophysiology

Volume 127, Issue 1, January 2016, Pages 17-18

Editorial

Future of clinical EEG in psychiatric
disorders: Shifting the focus from
diagnosis to the choice of optimal
treatment

Sebastian Olbrich & &, Jan Conradi
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* Objektive
Untersuchungen fihren
zu den richtigen
Entscheidungen in der
somatischen Medizin
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* In der Psychiatrie sind
weiterhin persdnliche
Meinungen und
subjektive Wahrnehmung
entscheidend fur wichtige
Therapieentscheidungen
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“Trial-and-error” in der psychiatrischen

Praxis?
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Drug Therapy Stimulation Psychedelics

DeepPsy
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Haufige Non-Response und Non-Remission: schwer zu behandelnde
Depressionen

22
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Stratifizierte Psychiatrie
Precision psychiatry t. . EO . |
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The use of a stratified psychiatry approach that combines electronic health records (EHR) data with machine learning (ML) is one EHR or E ( Q S 2
potentially fruitful path toward rapidly improving precision treatment in clinical practice. This strategy, however, requires biomarkers — ‘ learning —r AT

confronting pervasive methodological flaws as well as deficiencies in transparency and reporting in the current conduct of ML-
based studies for treatment prediction. EHR data shares many of the same data quality issues as other types of data used in ML
prediction, plus some unique challenges. To fully leverage EHR data’s power for patient stratification, increased attention to data
quality and collection of patient-reported outcome data is needed.
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634 Assessed for eligibility
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146 Randomized to sertraline
3 Dropped out before first dose
143 Received sertraline

A4

12 Missing baseline EEG data

10 Excluded from analysis
because of poor EEG data quality

(296 Randomized )

338 Excluded
325 Did not meet
inclusion/exclusion criteria
3 Randomized but did not
meet criteria

10 Treated with different
medication

Y

150 Randomized to placebo
6 Dropped out before first dose
144 Received placebo

Y

9 Missing baseline EEG data

8 Excluded from analysis
because of poor EEG data quality

Y
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121 Analyzed

127 Analyzed
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Estimated Week 8 Hamilton Rating Scale for Depression (HRSD) Scores for the Sertraline and Placebo Groups
Three values of baseline (A) and week 1 (B) rACC theta activity shown: 1 5D below the mean, the mean, and 1 5D above the mean. Error bars

represent +1 5E. rACC indicates rostral anterior cingulate cortex; S5RI, selective-serotonin reuptake inhibitor.




REBIOTECHNOLOGY
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I-SPOT — EEG -Alpha-Asymmetry geschlechterspezifisch

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier.com/locate/clinph

EEG alpha asymmetry as a gender-specific predictor of outcome to acute

Baseline EEG alpha asymmetry
treatment with different antidepressant medications in the randomized k

— B <001 ES=055 N —
iSPOT-D stuc]y L= Frenn - B
Martijn Arns *>*, Gerard Bruder*, Ulrich Hegerl d_Chris Spooner ®’, Donna M. Palmer “"¢, Amit Etkin™!, = l
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Vorhersage Behandlungserfolg durch ,frontale Alpha Asymmetrie”

Nur fir SSRIs, nicht bei SNRIs
Nur bei Frauen, nicht bei Mannern




Prediction: iSPOT-D

International Study to Predict Optimal Treamtent — in Depression

Multicentre, international, prospective, randomized, open-label effectiveness
trial

22 sites involved
2016 MDD subjects, 1008 included
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Pradiktion iSPOT-D: Algorithmus

Decline >

0.06/min
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0.15bpm/min
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» Keine Replikation des sogenannten
“Frontalen Theta” als
Pradiktionsmarker
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a.  Association between FAA and HDRS; at week 8 b. Association between FAA and AHDRS; at week 8
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e Replikation der Alpha Asymmetrie
als Pradiktionsmarker

e Ebenfalls nur bei Frauen

e =» Rechtsfrontale Alpha Aktivitat
sagt Response auf SSRIs voraus




The Neu ropha 'm * Cheng et al. 2021, Replikation Wachheitsregulation

Study — \/|g| |a nce e Schneller Abfall der EEG-Vigilanz sagt Response auf SSRIs voraus
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e 2x25 Patienten, iv. Ketamine, EEG-Vigilance (Cheng et
al. 2024)

Ketamin und Pradiktion

e Al Vigilanzstadien sagen Ketaminresponse voraus

A. Ketamine increases the amount of low vigilance stage Bl
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Vigilance stage A1 serves as predictive biomarker for treatment response and non-response

A. Combined ketamine and placebo interventions

B Combined interventions,
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Ketamin und N20 * Entgegengesetzte Effekte des Ketamin und N20 auf

(Lachgas) das ZNS und ANS(Kronenberg et al. 2022)
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Dataset-1 (18 Hz dTMS) Dataset-3 (20 Hz rTMS)
+23% +23%

Verwendung eines

Markers Tur verschiedene T | |
Behandlungen iigyi= I
Alpha Peak Frequenz : —
* EEG mit Abnormailtaten: Sertralin e
* EEG mit APF<<10Hz: EKT oder owvournas e () ure E—
18/20Hz TMS SuctroMcon (9
e EEG mit APF = 10Hz: 10Hz TMS J— —

e EEG mit APF >>10Hz: 1 Hz TMS

Voettel et al, 2024

100%



Abriormal EEG (IEDs/slowing of the EEG)T

‘ suspected IEDs n=4, EEG slowing n=9]*

Surtraline

=13

| @

n=15

FaAz0

Prospektive

Studie

EEG biomarker informed prescription of
antidepressants in MDD: a feasibility trial
Nikita van der Vinne?:<* Madelon A. Vollebregt®,

A. John Rush®=', Michiel Eebes?, Michel J.A.M. van
Putten®2', Martijn Arns®"b1

()

Check for
updates

Escitalapram
or Sertraline
=2l n=f
¥

WVenlafazine

Table 3 Treatment outcomes for the two patient groups.

TAU EEG-informed Total
n 52 70 122
BDI-Il baseline to week 8 35.4-27.1 31.7-20.2 33.3-23.1
% BDI-Il change (below per medication and per sex (in italic)) 23.9%" 36.8%" 31.3%
Escitalopram 34.3% (n = 20) 35.1% (n = 24)
Sertraline 23.5% (n = 8) 38.5% (n = 24)
Venlafaxine 18.1% (n = 8) 36.7% (n = 22)
Duloxetine 10.2% (n = 6) —
Bupropion 1.0% (n=12) —
Fluoxetine 25.5% (n=12) -
Nortriptyline addition 10.0% (n = 2) -
Vortioxetine 36.0% (n=12) —
Mirtazapine addition 26.0% (n=1) -
Paroxetine -7.0% (n=1) —
Female/Male 28.7%119.4% 38.3%/34.3%
Normal EEG 37.9%/36.1%
Abnormal EEG - 39.2%/29.3%
| Remission 17% 29% 24%
Female/Male 16%/19% 32%/23%
| Response 27% 39% 34%
Female/Male 28%/26% 39%/38%
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Patienten-1D: Bericht ID: 2147-62
Alter: Datum der Analys
Geschlecht: Waiblich Erstellungsdatum:
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Zusammenfassung der Korrelationen von Biomarkern
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Hame: Fall-ID:

Patienten-1D: Bericht ID: 2147-62
Alter: 38 Datum der Analyse:
Geschlecht: Waiblich Erstellungsdatum: 17.1

Verwendung in der ,,:
Psychiatrie

e DeepPsy Report flir EEG/EKG in | oo
Neuropsychiatrie (Michael Fischer) R N T ey

* Implementierung in der PUK Oktober
2023

* Hinweise Uber Behandlungsstrategien o Hertroquanvariabita
basierend auf Hirnwellen und '
Herzaktivitat

. i .
oo High Frequency (HF)

Herzfrequenz Herzirequenz Steigung

3 IIII'IlI -
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Die Zukunft mit
kinstlicher Intelligenz?




Google Alpha Go

* Wins over humans in complex
games

e Learns fastest when playing

against itself

e Discover new patterns that
have been unknown before




Autonomous driving

e Sensors stream data
e Al integrates data online
e Al makes decisions

 Moral questions unanswered
(Who's fault is an accident?)

o]

b

A




Deep Learning

* Text
Generierung

e Video
Generierung

e Stimmen
Generierung

=>» Deep Learning

Was ist das?




{"top_left": [107, 37], "size": 189, "detection": [159, 71, 252, 198], "face_id": 0, "detect_confidence": 0.999484658241272, "mask_confidence": 1.0, "overlap": "no", "neighbors": null}
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Filters

Input Data
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Paradoxon

e ,Deep Learning” verwendet
ahnliche Methoden wie
unser Nervensystem

* Im Psychiatrischen Kontext:
Kann uns so eine Methode
somit Uberhaupt
weiterbringen?




Was soll das mit dem
EEG zu tun haben?




~Ground Truth” MANN FRAU?




FUE™ Universitit
L Ziirich™

Psychiatrische
(‘ Universitatsklinik

Zurich

2 sec EEG
24 channels

Convolutional layer
50-300 filters 3x4

Pooling
Size 2x2

Dropout
25%

Dense Layer
256x%24=6144 neurons

Classification
Male - Female




Klinische
Verwendung?




EEG datasets from 2x Canada (including Canbind), 2x
Leipzig, 2 x Praha with > 250 MDD and >200 HC

All Patients treated with (es) citalopram
Outcome Data (MADRS or HDRS) available

Unification of EEG recordings across sites in preprocessing

MDD around

the world

1. Diagnostic Value of Deep Learning

2. Prognostic Value of Deep Learning




() s
Depression, EEG und Deep Learning

Psychiatrische
Universitatsklinik
Zurich
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67% diagnostische Genauigkeit bei MDD versus HC

80% pradiktive Vorhersage fiir SSRI



Was sieht das
Netzwerk?

e ,GRAD-CAM Methode”




R Psychiatrische
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Zurich

Lernen von Deep Learning

EEG - Two Second Segment GRAD-CAM Heatmap Overlay
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Take Home

e Das EEG hat einen wichtigen Stellenwert in der
Ausschlussdiagnostik in der Psychiatrie

e Das EEG hat einen wichtigen Stellenwert beim
Monitoring in der Psychiatrie (Medikamente,
EKT)

e Die EEG-Vigilanz korreliert mit
psychopathologischen Syndromen

* Das EEG bietet die Moglichkeit pradiktiver
Marker, die eine Verbesserung der
Behandlungseffizienz ermdglichen

e Das EEG und Deep Learning bieten neue
Moglichkeiten der Analyse neuronaler Aktivitat




Merci!

Fragen?
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